by Chang-Song Li^a)^b), Hong-Wei Yu^a)^b), Xiao-Zhen Chen^a), Xiao-Qing Wu^a), Guo-You Li^{*a}), and Guo-Lin Zhang^{*a})

 ^a) Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China (phone/fax: +86-28-85225401; e-mail: ligy@cib.ac.cn; zhanggl@cib.ac.cn)
^b) Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China

Three new eudesmanolactones (= eudesmanolides), loloanolide A (1), loloanolide B (2), and 1-*O*-acetylloloanolide B (3), together with five known compounds, were isolated from the CHCl₃ extract of the aerial parts of *Camchaya loloana*. Their structures were elucidated on the basis of spectroscopic analysis. This type of eudesmanolactones bearing a 2-(hydroxymethyl)acryloyloxy group at C(8) was discovered for the first time. Compounds 1-3 exhibited cytotoxicity against the HepG2 cell line, with GI_{50} values of 22.9, 18.1, and 12.8 nmol/ml, respectively.

Introduction. - The large family Asteraceae contains 25000 to 30000 species belonging to ca. 1000 genera. Many species have been used as sources for medicines, edible oils, vegetables, pesticides, etc. [1]. The extensive chemical and biological investigations showed that this family is a rich source of sesquiterpenoids, especially sesquiterpene lactones [2-4]. Many compounds from this family possess biological activities including antitumor [5], cytotoxic [6], antimicrobial [7], and anti-inflammatory effects [8]. The genus Camchaya with four species is distributed in the Indo-China Peninsula. C. loloana KERR is the only Chinese representative of this genus [9]. Previous studies of C. calcarea have resulted in the isolation of antiplasmodial and antimycobacterial germacrolide sesquiterpenes [10]. However, there has been no other report on chemical compositions of C. loloana subsequently. The present study reports the presence of eudesmanolactones (=eudesmanolides) in C. loloana, a rare kind of constituent in the genus Camchaya. On the basis of spectral data, the new compounds were determined to be $(3\beta,6\alpha,8\alpha)$ -3-(acetyloxy)-8-{[2-(hydroxymethyl)acryloy]] oxy}eudesma-1,11(13)-dieno-12,6-lactone¹) (=loloanolide A; 1), $(1\beta,6\alpha,8\alpha)$ -1-hydroxy-8-{[2-(hydroxymethyl)acryloyl]oxy}eudesma-2,4(14),11(13)-trieno-12,6-lactone1) (= loloanolide B; **2**), and $(1\beta, 6\alpha, 8\alpha)$ -1-acetyloxy)-8-{[2-(hydroxymethyl)acryloy]oxy}eudesma-2,4(14),11(13)-trieno-12,6-lactone¹) (=1-O-acetylloloanolide B; 3) (Fig. 1). The known compounds were characterized as β -sitosterol, β -daucosterol [11], lupenol, betulin [12], and caffeic acid [13]. To the best of our knowledge, compounds 1-3 are the first examples of eudesmanolactones with a 2-(hydroxymethyl)acryloyloxy group at C(8).

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Isolated new compounds 1-3 from C. loloana

Results and Discussion. – Loloanolide A (1) was obtained as a colorless gum. The HR-ESI-MS of 1 showed the quasi-molecular-ion peak at m/z 413.1569 ($[M + Na]^+$), corresponding to the molecular formula $C_{21}H_{26}O_7$ with nine degrees of unsaturation. The IR spectrum of 1 exhibited absorption bands assigned to OH (3514 cm⁻¹), α,β unsaturated ester (1731 cm⁻¹), and γ -lactone C=O groups (1747 cm⁻¹). The ¹H- and ¹³C-NMR spectra (*Table*) showed signals typical of an eudesmanolactone-like skeleton [4]. The ¹³C-NMR spectrum revealed the presence of 21 C-atoms, which were determined as three Me, two sp³ CH₂ (one O-bearing at δ (C) 62.0), six sp³ CH (three O-bearing at $\delta(C)$ 70.7, 77.7, and 71.5), and three C=O groups ($\delta(C)$ 170.7, 169.8, and 165.0), besides three C=C bonds and a quaternary C-atom (Table), attributed on the basis of chemical shifts, DEPT, and HSQC spectra. The ¹H-NMR spectrum of **1** showed one Me s (δ (H) 1.06), one Me d (δ (H)1.16 (d, J=6.3 Hz)), two terminal olefinic Hatoms (δ (H) 5.80 and 6.32 (each d, J=2.0 Hz)), and two olefinic H-atoms (δ (H) 5.66 and 5.69 (each d, J = 9.6 Hz)). The HSQC and HMBC spectra led to the identification of two partial structures: CH(5)-CH(6)-CH(7)-CH(8)-CH₂(9)-C(10)-Me(15) and $CH(7)-C(11)-CH_2(13)$ (Fig. 2). Moreover, the Me(14)-CH(4)-CH(5)-C(10)-CH(1)–CH(2)–CH(3)–CH(4) structure was readily deduced by HMBC cross-peaks. Connection of these fragments established the framework of an eudesmanolactone. The ¹H-NMR signals at δ (H) 5.88 (br. s, 1 H), 6.22 (br. s, 1 H), and 4.29 (s, 2 H), as well as the ¹³C-NMR signals at δ (C) 165.0 (C(1')), 139.0 (C(2')), 126.6 (C(3')), and 62.0 (C(4')), were undoubtedly assigned to a 2-(hydroxymethyl)acryloyloxy moiety, which was located at C(8) in view of the HMBC H–C(8)/C(1'). In addition, ¹H-NMR signals at δ (H) 2.03 (s, 3 H) and the ¹³C-NMR signals at δ (C) 170.7 (C(1'')) were attributed to an AcO group which was attached to C(3) in view of the HMBC H-C(3)/C(1"). The lactone ring should be formed between C(6) and C(12) as suggested by the HMBC H-C(6)/C(12). The relative configurations of the various groups were assigned on the basis of NOESY experiments (*Fig. 3*) and ¹H,¹H-couplingconstant analysis. In the NOESY plot, Me(15) correlated with H–C(4) (δ (H) 2.08– 2.11), H–C(6) (δ (H) 4.59), and H–C(8) (δ (H) 5.44) suggesting that Me(15), H–C(4), H–C(6), and H–C(8) were oriented to the same β side. The NOESY correlation of the H–C(7) signal (δ (H) 3.54–3.56) with H–C(5) (δ (H) 2.10) and the coupling constant J(7,8) = 8.4 Hz) indicated that H–C(7) and H–C(5) were α -oriented. H–C(3) was also α -oriented based on the NOESY correlation H–C(3)/H–C(5).

	1 ^a)		2 ^a)		3 ^a)	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
H–C(1)	5.66 (d, J = 9.6)	141.8	3.53 (d, J = 5.5)	71.8	4.76(d, J = 5.5)	73.2
H–C(2)	5.69(d, J = 9.6)	121.8	5.82 (<i>dd</i> ,	125.9	5.79 (dd,	122.2
			J = 9.3, 5.5)		J = 9.6, 5.5)	
H-C(3)	5.15 $(t, J = 3.1)$	70.7	6.25 (d, J = 9.3)	133.0	6.31 (d, J = 9.6)	134.4
H–C(4)	2.08–2.11 (<i>m</i>)	42.0	-	134.7	-	134.8
or C(4)						
H-C(5)	2.10 (d, J = 9.6)	32.9	2.69 (d, J = 9.4)	41.0	2.75 (d, J = 9.4)	41.7
H–C(6)	4.59 (dd,	77.7	4.94(t, J = 8.1)	76.7	4.92 (dd,	76.7
	J = 9.6, 7.3)				J = 9.4, 7.6)	
H-C(7)	3.54–3.56 (<i>m</i>)	41.6	3.60 - 3.64(m)	42.5	3.60 - 3.64(m)	42.3
H–C(8)	5.44 (ddd,	71.5	5.45 - 5.48 (m)	70.7	5.41 (ddd,	70.6
	J = 8.4, 6.0, 4.0)				J = 9.0, 7.7, 4.2)	
CH ₂ (9)	1.84 (<i>dd</i> ,	40.5	1.56 (dd,	34.1	1.60 (dd,	34.2
	$J = 14.8, 4.0, H_a),$		J = 14.0, 4.2)		J = 14.0, 4.2)	
	1.97 (dd,		2.60 (dd,		2.21 (dd,	
	$J = 14.8, 6.0, H_{\beta})$		J = 14.0, 8.1)		J = 14.0, 7.7)	
C(10)	-	34.8	-	37.3	-	35.9
C(11)	-	135.4	-	140.6	-	140.3
C(12)	-	169.8	-	169.6	-	169.5
CH ₂ (13)	5.80 (d, J = 2.0),	123.6	5.92 (d, J = 2.6),	123.8	5.91 (d, J = 2.7),	123.7
	6.32 (d, J = 2.0)		6.36 (d, J = 2.6)		6.37 (d, J = 2.7)	
Me(14)	1.16 (d, J = 6.3)	15.1	5.44, 5.23 (2 br. s)	116.9	5.49, 5.28 (2 br. s)	117.8
or $CH_2(14)$						
Me(15)	1.06(s)	22.3	0.86(s)	20.1	0.94(s)	20.3
C(1')	-	165.0	-	165.2	-	165.1
C(2')	-	139.0	-	139.1	-	139.0
CH ₂ (3')	5.88, 6.22 (2 br. s)	126.6	5.86, 6.23 (2 br. s)	127.1	5.92, 6.26 (2 br. s)	126.7
$CH_{2}(4')$	4.29 (s)	62.0	4.26 - 4.34(m)	62.3	4.32(s)	62.1
C(1")	-	170.7	-	-	-	170.3
Me(2'')	2.03 (s)	20.7	_	-	1.98 (s)	20.9

Table. ¹*H*- and ¹³*C*-*NMR Data* (CDCl₃; 600 and 150 MHz, resp.) of Compounds $1-3^{a}$). δ in ppm, *J* in Hz.

^a) Assignments based on HSQC and HMBC experiments.

Fig. 2. Selected HMBCs $(\mathrm{H}\,{\rightarrow}\,\mathrm{C})$ of 1 and 2

Fig. 3. Selected NOESY correlations $(H \leftrightarrow H)$ of 1 and 2

Therefore, loloanolide A (1) could be characterized as $(3\beta,6\alpha,8\alpha)$ -3-(acetyloxy)-8-{[2-(hydroxymethyl)acryloyl]oxy}eudesma-1,11(13)-dieno-12,6-lactone¹).

Loloanolide B (2) was isolated as a colorless gum. Its molecular formula $C_{19}H_{22}O_6$ was deduced from the quasi-molecular-ion peak at m/z 369.1298 ($[M + Na]^+$) in the HR-ESI-MS. The IR spectrum showed maxima at 3433 cm⁻¹ (OH), 1760 cm⁻¹ (ylactone), 1715 cm⁻¹ (α,β -unsaturated ester), 1633 cm⁻¹ (C=C bond), and 1160 cm⁻¹ $(\tilde{\nu}_{C-\Omega})$ of ester). Interpretation of the ¹H- and ¹³C-NMR (DEPT) and HSQC revealed that compound **2** possessed one Me, two sp³ CH₂ (an O-bearing at δ (C) 62.3), five sp³ CH (three O-bearing at $\delta(C)$ 71.8, 76.7, and 70.7), and two C=O groups ($\delta(C)$ 169.6 and 165.2), besides four C=C bonds (Table). Careful study of the NMR spectra suggested that compound 2 was also an eudesmanolactone containing a 2-(hydroxymethyl)acrylovloxy group at C(8). Compared to 1, one Me and one Ac group were absent, and one more C=C bond was present in 2. The presence of conjugated C=C bonds (δ (H) 5.82 (dd, J = 9.3, 5.5 Hz, 1 H), 6.25 (d, J = 9.3 Hz, 1 H), 5.44 (br. s, 1 H), and 5.23 (br. s, 1 H)) was confirmed by the HMBCs $CH_2(14)/C(3)$ and C(4), and H-C(3)/C(2) and C(4) (Fig. 2). In addition, the HMBCs Me(15)/C(1) and H-C(2)/C(1)C(1) established the presence of a β -OH group at C(1), which was confirmed by the key NOESY correlation H-C(1)/H-C(5). The relative configurations of other groups were also assigned on the basis of NOESY experiments (Fig. 3). Thus, the structure of loloanolide B (2) was determined as $(1\beta,6\alpha,8\alpha)$ -1-hydroxy-8-{[2-(hydroxymethyl)acryloyl]oxyeudesma-2,4(14),11(13)-trieno-12,6-lactone¹).

Compound **3** was a colorless gum. The molecular formula $C_{21}H_{24}O_7$ was established from the quasi-molecular-ion peak at m/z 411.1427 ($[M + Na]^+$) in the HR-ESI-MS. The UV, IR, ¹H- and ¹³C-NMR data were very similar to those of **2**, except for the presence of one more Ac group (δ (H) 1.98 (s, Me(2'')); δ (C) 20.9 (C(2'')) and 170.3 (C(1''))). The 1 β -AcO group was deduced from the HMBC H–C(1) (δ (H) 4.76 (d, J =5.5 Hz))/C(1'') and the NOESY correlation H–C(5)/H–C(1). The remaining structure and relative configuration of **3** were the same as those of **2**. Thus, the structure of **3** was elucidated as (1 β ,6 α ,8 α)-1-(acetyloxy)-8-{[2-(hydroxymethyl)acryloyl]oxy}eudesma-2,4(14),11(13)-trieno-12,6-lactone¹) (=1-O-acetylloloanolide B).

Compounds **1**, **2**, and **3** showed cytotoxicity against the HepG2 cell line, with GI_{50} values of 22.9, 18.1, and 12.8 nmol/ml, respectively.

Experimental Part

General. TLC: Merck 0.25 mm thick precoated silica gel (SiO₂) 60 F254 plates. HPLC: Perkin-Elmer-600 prep. HPLC instrument, with a Kromasil-100-10- C_{18} column (250 × 20 mm). Column chromatography (CC): SiO₂ (200–300 mesh). Optical rotations: Perkin-Elmer-341 automatic polarimeter. UV Spectra: Perkin-Elmer Lambda-35 spectrometer; λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer FT-IR spectrometer; KBr disk; in KBr pellets in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker-Advance-600 spectrometer; at 295 K; δ in ppm rel. to Me₄Si, J in Hz. MS: Bruker-Daltonics-Bio-TOF-Q mass spectrometer; in m/z.

Plant Material. The aerial parts of *Camchaya loloana* were collected from Xishuangbanna, Yunnan Province, China, in September 1998. The plant sample was identified by Prof. *Jingyun Cui* at Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences (CAS). A voucher specimen (Z-005) was deposited with the Herbarium of the Chengdu Institute of Biology, CAS.

Extraction and Isolation. The 95% EtOH extract (80 g) of air-dried aerial parts of *C. loloana* (2.1 kg) was suspended in H₂O and extracted successively with petroleum ether, CHCl₃, and BuOH. The CHCl₃ fraction (18 g) was separated by CC (SiO₂ (600 g; 150 mm × 330 mm), petroleum ether/acetone 5:1, 4:1, 3:1, 2:1, 1:1, 1:2 (each 3000 ml)): *Fractions A* – *D*. The separation of *Fr. A* (2.5 g) by CC (SiO₂ (80 g; 40 mm × 250 mm), petroleum ether/AcOEt 10:1) afforded β -sitosterol (0.8 g) and lupeol (0.4 g). Betulin (0.2 g) and caffeic acid (0.72 g) were obtained, resp., by crystallizing *Fr. B* from petroleum ether/acetone 1:1 and *Fr. C* from acetone. The residue of the mother liquid (1.1 g) of the betulin crystallization was applied to CC (SiO₂ (50 g; 30 mm × 200 mm), CHCl₃/acetone 4:1): **1** (14 mg). Separation of the residue of the mother liquid (65 mg) of caffeic acid by semi-prep. HPLC (MeOH/H₂O 55:45) yielded **2** (7 mg) and **3** (15 mg). *Fr. D* (4.0 g) was subjected to CC (SiO₂ (150 g; 50 mm × 30 mm), CHCl₃/MeOH 5:1): β -daucosterol (2.7 g).

Loloanolide A (=(3 β ,6a,8a)-3-(Acetyloxy)-8-{[2-(hydroxymethyl)acryloyl]oxy}eudesma-1,11(13)dieno-12,6-lactone = rel-(3aR,4S,5aS,8S,9S,9aS,9bR)-8-(Acetyloxy)-2,3,3a,4,5,5a,8,9,9a,9b-decahydro-5a,9-dimethyl-3-methylene-2-oxonaphto[1,2-b]furan-4-yl 2-(Hydroxymethyl)prop-2-enoate; **1**): Colorless gum. [a] $_{25}^{25}$ = -9.0 (c = 0.10, MeOH). UV (MeOH): 269 (3.34), 206 (4.14). IR: 3514, 2925, 1747, 1731, 1644, 1378, 1337, 1239, 1165, 1130, 1059, 1016, 986, 968, 919. ¹H- and ¹³C-NMR: Table. HR-ESI-MS (pos.): 413.1569 ([M + Na]⁺; calc. 413.1571).

Loloanolide B (=(1 β ,6 α ,8 α)-1-Hydroxy-8-{[2-(hydroxymethyl)acryloyl]oxy]eudesma-2,4(14), 11(13)-trieno-12,6-lactone = rel-(3aR,4S,5aR,9aS,9bR)-2,3,3a,4,5,5a,6,9,9a,9b-Decahydro-6-hydroxy-5amethyl-3,9-bis(methylene)-2-oxonaphtho[1,2-b]furan-4-yl 2-(Hydroxymethyl)prop-2-enoate; **2**): Colorless gum. [a] $_{25}^{25}$ = +141.0 (c = 0.10, MeOH). UV (MeOH): 266 (3.15), 213 (4.07). IR: 3433, 2924, 2855, 1760, 1715, 1633, 1385, 1322, 1271, 1160, 1109, 1031, 817. ¹H- and ¹³C-NMR: Table. HR-ESI-MS (pos.): 369.1298 ([M + Na]⁺; calc. 369.1309).

1-O-Acetylloloanolide B (=(1β,6α,8α)-1-(Acetyloxy)-8-{[2-(hydroxymethyl)acryloy]oxy}eudesma-2,4(14),11(13)-trieno-12,6-lactone = rel-(3aR,4S,5aR,9aS,9bR)-6-(Acetyloxy)-2,3,3a,4,5,5a,6,9,9a,9bdecahydro-5a-methyl-3,9-bis(methylene)-2-oxonaphtho[1,2-b]furan-4-yl 2-(Hydroxymethyl)prop-2enoate; **3**): Colorless gum. [a] $_{25}^{25}$ = +46.0 (c = 0.12, MeOH). UV (MeOH): 268 (3.22), 218 (4.35). IR: 3442, 2928, 1764, 1725, 1636, 1372, 1240, 1157, 1054, 1018, 990, 948, 817. ¹H- and ¹³C-NMR: Table. HR-ESI-MS (pos.): 411.1427 ([M + Na]⁺; calc. 411.1414).

Cytotoxicity Assays. Hepatoma cell line HepG2 was obtained from the *American Type Culture Collection (ATCC)* and cultured according to the supplier's instruction. The cells were seeded into 96-well plates, incubated for 16 h at 37°, and treated with compounds **1**, **2**, and **3** at different concentrations for 48 h. Taxol was used as pos. control. The cytotoxic activity was examined by means of a colorimetric chemosentivity assay with SRB (sulforodhamine B). The GI_{50} value (the drug concentration required to inhibit the cell growth by 50%) was used as a parameter for cytotoxicity.

REFERENCES

 Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, in 'Flora Reipublicae Popularis Sinicae', Science Press, Beijing, 1985, Vol. 74, p. 1.

- [2] F. Bohlmann, J. Jakupovic, M. Ahmed, A. Schuster, Phytochemistry 1983, 22, 1623.
- [3] J. Jakupovic, L. Lehmann, F. Bohlmann, R. M. King, H. Robinson, Phytochemistry 1988, 27, 3831.
- [4] F. Bohlmann, J. Jakupovic, A. Schuster, Phytochemistry 1983, 22, 1637.
- [5] S. H. Lee, H. K. Kim, J. M. Seo, H. M. Kang, J. H. Kim, K. H. Son, H. Lee, B. M. Kwon, J. Shin, Y. Seo, J. Org. Chem. 2002, 67, 7670.
- [6] J. Triana, M. López, F. J. Pérez, J. González-Platas, J. Quintana, F. Estévez, F. León, J. Bermejo, J. Nat. Prod. 2003, 66, 943.
- [7] S. Djeddi, A. Karioti, M. Sokovic, D. Stojkovic, R. Seridi, H. Skaltsa, J. Nat. Prod. 2007, 70, 1796.
- [8] S. Müller, R. Murillo, V. Castro, V. Brecht, I. Merfort, J. Nat. Prod. 2004, 67, 622.
- [9] Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, in 'Flora Reipublicae Popularis Sinicae', Science Press, Beijing, 1985, Vol. 74, pp. 41-42.
- [10] N. Vongvanich, P. Kittakoop, P. Charoenchai, S. Intamas, K. Sriklung, Y. Thebtaranonth, *Planta Med.* 2006, 72, 1427.
- [11] H. Kojima, N. Sato, A. Hatano, H. Ogura, *Phytochemistry* 1990, 29, 2351.
- [12] M. Sholichin, K. Yamasaki, R. Kasai, O. Tanaka, Chem. Pharm. Bull. 1980, 28, 1006.
- [13] Z. J. Wu, M. A. Ouyang, C. R. Yang, Acta Bot. Yunnan. 1999, 21, 393.

Received April 6, 2010